Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Dicyanoanthraquinone

Mahsa Armaghan, ^a Mostafa M. Amini^a and Seik Weng Ng^{b*}

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 2 March 2010; accepted 2 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.149; data-to-parameter ratio = 11.0.

The complete molecule of the title compound, $C_{16}H_6N_2O_2$, which is generated by a crystallographic inversion centre, is almost planar (r.m.s. deviation = 0.04 Å). In the crystal, adjacent molecules are stacked along the *a* axis, with a shortest centroid–centroid separation of 3.826 (2) Å.

Related literature

For the synthesis, see: Casey *et al.* (1999); Coulson (1930*a,b*). For some applications of anthraquinones, see: Alagesan & Samuelson (1997); Chang *et al.* (1996); Cheng *et al.* (1994); Kuritani *et al.* (1973); Lin *et al.* (1995).

Experimental

Crystal data

5	
$\begin{array}{l} C_{16}H_6N_2O_2\\ M_r = 258.23\\ \text{Monoclinic, } P2_1/c\\ a = 3.8256 \ (10) \ \text{\AA}\\ b = 7.0183 \ (19) \ \text{\AA}\\ c = 21.249 \ (6) \ \text{\AA}\\ \beta = 91.064 \ (4)^{\circ} \end{array}$	$V = 570.4 (3) Å^{3}$ Z = 2 Mo K\alpha radiation \(\mu = 0.10 \text{ mm}^{-1}\) T = 293 K 0.35 \times 0.06 \times 0.03 \text{ mm}\)
Data collection	
Bruker SMART APEX diffractometer 4238 measured reflections	1013 independent reflections 600 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.149$ S = 1.06 1013 reflections	92 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.19 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$
	2000) 11 6 6 6 6

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5350).

References

Alagesan, K. & Samuelson, A. G. (1997). Synth. Met. 87, 37-44.

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casey, J. L., Deady, L. W., Hughes, A. B., Klonis, N., Quazi, N. H. & Tilley, L. M. (1999). PCT Int. Appl. Patent No. WO 99-AU14419990311.
- Chang, J. S., Liu, L. K. & Wang, C. M. (1996). Jpn J. Appl. Phys. 35, L1042– L1043.
- Cheng, H. W., Wang, C. M. & Liu, L. K. (1994). Jpn J. Appl. Phys. 33, L607–L609.
- Coulson, E. A. (1930a). J. Chem. Soc. pp. 1931-1936.
- Coulson, E. A. (1930b). Chem. Abstr. 24, 49079.
- Kuritani, M., Sakata, Y., Ogura, F. & Nakagawa, M. (1973). Bull. Chem. Soc. Jpn, 46, 605–610.
- Lin, H. L., Liu, L. K. & Wang, C. M. (1995). J. Phys. Chem. 99, 9136-9142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, 0767 [doi:10.1107/S1600536810007993]

1,5-Dicyanoanthraquinone

M. Armaghan, M. M. Amini and S. W. Ng

Comment

The title substituted anthraquinone (Scheme I, Fig. 1) was synthesized to study its ability to absorb sulfur from oil when immobilized on silica surface (MCM-41). Anthraquinones are a class of anthracene derivatives having useful industrial applications (Alagesan & Samuelson, 1997; Chang *et al.*, 1996; Cheng *et al.*, 1994; Kuritani *et al.*, 1973; Lin *et al.*, 1995). However, they are usually only sparingly soluble in common oragnic solvents. In the present study, the synthesis involves the exchange of chlorine of 1,5-dichloroanthraquinone with the cyanide of copper cyanide (Coulson, 1930; Casey *et al.*, 1999). The compound is somewhat soluble in DMSO but the recrystallized product is a yellow powder. Crystals were ultimately obtained by diffusing methanol into a DMSO solution of the compound.

The molecule of 1,5-dicyanoanthraquinone, which lies about a center-of-inversion, is planar (max. r.m.s.deviation 0.04 Å). Adjacent molecules are stacked over each other along the *a*-axis of the monoclinic unit cell; the distance is that of the *a*-axial length itself (Fig. 2).

Experimental

1,5-Dicyanoanthraquinone was prepared by using a reported procedure by reacting 1,5-dichloroanthraquinone with benzyl cyanide in presence of cuprous cyanide (Coulson, 1930a,b; Casey *et al.*, 1999). The compound is sparingly soluble in common solvents; yellow prisms of (I) were obtained by the slow diffusion of methanol into a DMSO solution of the compound; m.p.> 633 K, decompose).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1. The molecular structure of (I): displacement ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius. Unlabelled atoms are generated by the symmetry operation (1-x, 1-y, 1-z).

Fig. 2. Stacking of the molecules in the unit cell of (I).

1,5-Dicyanoanthraquinone

Crystal data

$C_{16}H_6N_2O_2$
$M_r = 258.23$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 3.8256 (10) Å
<i>b</i> = 7.0183 (19) Å
c = 21.249 (6) Å
$\beta = 91.064 \ (4)^{\circ}$
$V = 570.4 (3) \text{ Å}^3$
Z = 2

Data collection

$D_{\rm x} = 1.503 {\rm Mg} {\rm m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 614 reflections
$\theta = 3.1 - 25.4^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 K
Prism, yellow
$0.35 \times 0.06 \times 0.03 \text{ mm}$

F(000) = 264

Bruker SMART APEX diffractometer	600 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.048$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$
ω scans	$h = -4 \rightarrow 4$
4238 measured reflections	$k = -8 \rightarrow 8$
1013 independent reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.149$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0649P)^{2} + 0.1468P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.001$
1013 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
92 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.023 (0)

methods Primary atom site location: structure-invariant direct Extinction coefficient: 0.033 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.8448 (7)	0.2052 (3)	0.55023 (10)	0.0691 (8)
N1	0.0797 (10)	0.7591 (5)	0.30574 (16)	0.0837 (11)

C1	0.6782 (8)	0.3375 (4)	0.52815 (13)	0.0407 (7)
C2	0.5829 (7)	0.3390 (4)	0.46013 (12)	0.0373 (7)
C3	0.6669 (8)	0.1823 (4)	0.42375 (14)	0.0473 (8)
Н3	0.7752	0.0773	0.4423	0.057*
C4	0.5910 (9)	0.1815 (5)	0.36042 (15)	0.0583 (10)
H4	0.6438	0.0750	0.3364	0.070*
C5	0.4369 (9)	0.3378 (5)	0.33232 (15)	0.0566 (9)
Н5	0.3903	0.3369	0.2892	0.068*
C6	0.3504 (7)	0.4968 (4)	0.36757 (13)	0.0430 (8)
C7	0.4220 (7)	0.4985 (4)	0.43270 (12)	0.0373 (7)
C8	0.1889 (8)	0.6593 (5)	0.33253 (14)	0.0424 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.097 (2)	0.0525 (15)	0.0572 (15)	0.0343 (13)	-0.0103 (13)	0.0056 (11)
N1	0.090 (3)	0.093 (3)	0.068 (2)	-0.006 (2)	0.0044 (19)	-0.0029 (19)
C1	0.0450 (18)	0.0323 (16)	0.0450 (17)	0.0043 (13)	0.0016 (13)	0.0035 (13)
C2	0.0383 (17)	0.0308 (16)	0.0427 (16)	0.0014 (12)	0.0011 (12)	0.0016 (12)
C3	0.053 (2)	0.0347 (18)	0.0540 (19)	0.0052 (13)	0.0015 (14)	-0.0067 (14)
C4	0.063 (2)	0.052 (2)	0.060 (2)	0.0047 (16)	0.0011 (17)	-0.0155 (17)
C5	0.058 (2)	0.070 (2)	0.0414 (17)	-0.0024 (17)	-0.0007 (15)	-0.0078 (16)
C6	0.0400 (17)	0.0455 (18)	0.0437 (17)	-0.0032 (14)	0.0028 (12)	-0.0009 (14)
C7	0.0325 (15)	0.0377 (17)	0.0416 (16)	-0.0027 (12)	0.0024 (11)	0.0024 (12)
C8	0.0388 (18)	0.050 (2)	0.0382 (17)	0.0024 (14)	-0.0053 (13)	0.0059 (15)

Geometric parameters (Å, °)

O1—C1	1.216 (3)	C4—C5	1.376 (4)
N1—C8	0.991 (4)	C4—H4	0.9300
C1—C7 ⁱ	1.475 (4)	C5—C6	1.387 (4)
C1—C2	1.484 (4)	С5—Н5	0.9300
C2—C3	1.386 (4)	C6—C7	1.406 (3)
C2—C7	1.399 (4)	C6—C8	1.490 (4)
C3—C4	1.371 (4)	C7—C1 ⁱ	1.475 (4)
С3—Н3	0.9300		
O1—C1—C7 ⁱ	121.2 (3)	C5—C4—H4	119.9
O1—C1—C2	119.9 (3)	C4—C5—C6	120.8 (3)
C7 ⁱ —C1—C2	118.8 (2)	C4—C5—H5	119.6
C3—C2—C7	120.5 (3)	С6—С5—Н5	119.6
C3—C2—C1	118.8 (2)	C5—C6—C7	119.6 (3)
C7—C2—C1	120.7 (2)	C5—C6—C8	116.5 (3)
C4—C3—C2	120.2 (3)	C7—C6—C8	123.9 (3)
С4—С3—Н3	119.9	C2—C7—C6	118.7 (3)
С2—С3—Н3	119.9	C2C7C1 ⁱ	120.4 (2)
C3—C4—C5	120.2 (3)	C6—C7—C1 ⁱ	120.9 (3)
C3—C4—H4	119.9	N1—C8—C6	174.6 (4)

supplementary materials

01—C1—C2—C3	4.2 (4)	C4—C5—C6—C8	179.3 (3)
C7 ⁱ —C1—C2—C3	-177.9 (3)	C3—C2—C7—C6	-0.5 (4)
O1—C1—C2—C7	-173.6 (3)	C1—C2—C7—C6	177.2 (2)
C7 ⁱ —C1—C2—C7	4.3 (4)	C3—C2—C7—C1 ⁱ	177.9 (3)
C7—C2—C3—C4	-0.4 (4)	C1—C2—C7—C1 ⁱ	-4.4 (4)
C1—C2—C3—C4	-178.2 (3)	C5—C6—C7—C2	0.6 (4)
C2—C3—C4—C5	1.3 (5)	C8—C6—C7—C2	-178.4 (3)
C3—C4—C5—C6	-1.2 (5)	C5—C6—C7—C1 ⁱ	-177.8 (3)
C4—C5—C6—C7	0.2 (4)	C8—C6—C7—C1 ⁱ	3.2 (4)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Fig. 1

Fig. 2